BME 310 Biomedical Computing

CLASS HOURS Tuesday Wednesday 1:00 pm – 2:25pm (Fenster 640) Thursday 8:30 am – 9:55am (Fenster 640) **OFFICE HOURS (Fenster 610)** M, T, R, F 12pm – 1pm Or by appointment (973) 596 3193 joelsd@njit.edu

TEXT

Signal Processing First, McClellan, Schafer & Yoder ISBN: 0130909998 Supplemental handouts are found on http://web.njit.edu/~joelsd

COURSE DESCRIPTION

Prerequisites: BME 301 and Math 112. This course covers the application of digital signal processing to biomedical problems. Labview, a graphical programming language common in engineering, is used for both signal acquisition and processing. Applications include analysis of the electrocardiogram and other electrical signals generated by the body.

LEARNING OUTCOMES

By the end of the course you should be able to do the following:

- **Digital Signal Processing:** Understand the fundamental principles of digital signal processing. In particular, gain knowledge in Fourier Series, Fourier Transforms, FIR, Frequency Response, and Sampling. Apply knowledge of math, engineering and science to identify, formulate, and solve problems in these areas.
- **Data Interpretation:** Learn to utilize Labview software to design and analyze data. Apply knowledge of math, engineering and science to interpret data. Develop an understanding of and develop the skills necessary to communicate findings and interpretations in an effective laboratory report.
- **Biomedical Signal Processing:** Apply knowledge of math, engineering and science to understand the principle of biomedical signal processing. Understand how to apply specific mathematical techniques to solve problems in the areas of biomedical signals.
- Work in Multi-disciplinary teams: Learn to work and communicate effectively with peers on multi-disciplinary teams to attain a common goal.

COURSE OUTLINE*

Date	Topic/Lecture		Material	Class work	Reading/Problem Assignment
09/04/18	Introduction to Signal and Systems	1	Chapters 1	In-class discussion:	See Notes
09/05/18	Recitation			Review	
09/06/18	Sinusoids	2	Chapter 2	In-class discussion; Review exercises	See Notes
09/11/18	Sinusoids	3	Chapter 2	In-class discussion; Review exercises	See Notes
09/12/18	Recitation		Labview Introduction <u>http://www.ni.</u> <u>com/academic</u> /lv_training/h <u>ow_learn_lv.h</u> <u>tm</u>	Review	
09/13/18	Spectrum	4	Chapter 3	In-class discussion; Review exercises	See Notes
09/18/18	Lab #1		Handout	Simple calculations in Labview	
09/19/18	Recitation			Lab #1 & 2 Review	
09/20/18	Lab #2		Handout	Array calculations in Labview	
09/25/18	Spectrum	5	Chapter 3	In-class discussion; Review exercises	See Notes
09/26/18	Recitation			Review	
09/27/18	Sampling and Aliasing	6	Chapter 4	In-class discussion; Review exercises	See Notes
10/02/18	Review			Review exercises and Homework	
10/03/18	Recitation			Review	
10/04/18	Exam #1				
10/09/18	Sampling and Aliasing Homework Review		Chapter 4	In-class discussion; Review exercises	
10/10/18	Recitation			Matlab	
10/11/18	Lab #3		Handout	Signal Generation	

COURSE OUTLINE*

10/16/18	FIR Filters	7	7 In-class		See Notes
			Chapter 5	discussion;	
			_	Review exercises	
10/17/18	Recitation			Prepare for Lab	
				#4	
10/18/18	FIR Filters	8		In-class	See Notes
			Chapter 5	discussion;	
				Review exercises	
10/23/18	Lab #4		Handout	Spectrum	
			Thandout	Generation	
10/24/18	Recitation				
				Lab #4	
10/25/18	Projects			Biomedical	
			Handouts	Signals	
				Signals	
	Frequency Response of	9		In-class	See Notes
10/30/18	FIR Filters		Chapter 6	discussion;	
				Review exercises	
10/31/18	Recitation			Review	
11/01/18	Frequency Response of	10		In-class	See Notes
	FIR Filters		Chapter 6	discussion;	
				Review exercises	
11/06/18	Review			Review exercises	
11/07/18	Recitation			Review	
11/08/18	Exam #2				
11/13/18	Frequency Response	11		In-class	
			Chapter 10	discussion;	
				Review exercises	
11/14/18	Recitation			Prepare for Lab	
				#5	
11/15/18	~				See Notes
44/20/	Lab #5	10			
11/20/18	Frequency Response	12		In-class	See Notes
			Chapter 10	discussion;	
11/27/10	Homowork Daview			Review exercises	
11/2//10				Keview exercises	
11/28/18	Recitation				
11/29/18	Lab #6			Real world	
			Handouts	measurement of	
				Biomedical	
10/04/10		1.2		Signals	
12/04/18	Computing	13		In-class	
			Chapter 13	alscussion;	See Notes
12/05/10	Desitation			Keview exercises	
12/05/18	Kecitation			Lab #7	

12/06/18	Computing	13		In-class	
			Chapter 13	discussion;	
				Review exercises	
12/11/18	Review				
12/12/18	Recitation			Review	
TBA	Final				

*The Course Outline may be modified at the discretion of the instructor or in the

*The Course Outline may be modified at the discretion of the instructor or in the event of extenuating circumstances. Students will be notified in class of any changes to the Course outline and schedule of laboratory sessions.

GRADING

Homework and Matlab Programming: 10% Class participation: 10% Laboratory Exercises (including Lab reports): 20% Exam 1: 15% Exam 2: 15% Final Exam 30%

Attendance is mandatory. Failure to attend class regularly will result in a failing grade. No makeup examinations will be administered. If a valid, documented excuse for a missed exam is provided, the weight of the Final Exam will increase to compensate for the missed grade.

LABORATORY EXERCISES

BME 311 uses a laboratory exercises to supplement to the conventional lecture and recitation format. In general, each session will begin with a mini-lecture, followed by the laboratory exercise. These exercises are challenge-driven and require that you are fully engaged in the learning process. The laboratory exercise will be team oriented (maximum of 3 people per team) and the team will be responsible form maintaining a laboratory notebook. Each of the team members will be expected to design the initial solution, laboratory exercise coordinator (the person who coordinates the team for the laboratory exercise), take measurements, interpret the data, validate the results, and write the laboratory notebook. The responsibilities of the team members will be

different for each exercise, e.g., each team member must have the opportunity to write the lab report, to construct the initial design, etc.

Guidelines for Laboratory Reports

Your team is expected to maintain a laboratory notebook which will track the progress of each laboratory exercise. For each laboratory exercise, the lab notebook must contain

- 1. (prior to class) the lab exercise
- 2. (prior to class) a solution to the problem posed (e.g., the design of your program in terms of a block diagram),
- 3. (in class) the working program (Labview block diagrams) and collect results (e.g., Labview screens demonstrating that their program works),
- 4. interpretation and validation that the results are correct using the material discussed in class,
- 5. what was learned in the exercise (e.g., use of Labview, troubleshooting, etc.)
- 6. note the team members and their responsibilities:
 - a. initial solution designer
 - b. laboratory coordinator
 - c. measurement taker
 - d. data interpreter
 - e. results validation person
 - f. lab report writer

Written lab reports must be submitted one-week after the laboratory exercise, unless otherwise specified[#]. Please note: *reports that are submitted without evidence of participation in the laboratory exercise will be considered plagiarism* and will result in dismissal from the course. You cannot copy the experimental results of others and claim credit.

Honor Code Violations/Disruptive Behavior:

NJIT has a zero-tolerance policy regarding cheating of any kind and student behavior that is disruptive to a learning environment. Any incidents will be immediately reported to the Dean of Students. In the cases the Honor Code violations are detected, the punishments range from a minimum of failure in the course plus disciplinary probation up to expulsion from NJIT with notations on students' permanent record. Avoid situations where honorable behavior could be misinterpreted.

No eating or drinking is allowed at the lectures, recitations, workshops, and laboratories. Cellular phones must be turned off during the class hours.

Divite 510. Learning Outcome Summary								
Strategies and Actions	Student Learning Outcomes	Outcomes (a-m)	Prog. Object.	Assessment Methods/Metrics				
Actions								
Course Objective 1: Digital Signal Processing: Understand the fundamental principles of digital signal								
processing. In particular, gain knowledge in Fourier Series, Fourier Transforms, FIR, Frequency Response, and								
Sampling. Apply knowledge of math, engineering and science to identify, formulate, and solve problems in these								
Biomedical signal	Understand the fundamental	ABDEGK	1.2	Tests homework				
processing with	principles of signal processing and	A,D,D,L,O,A	1, 2	studio exercises				
applications are	system analysis			and laboratory				
covered in class	by sterin unury sis.			reports are				
lectures, homework,				graded.				
and laboratory				0				
assignments.								
Course Objective 2: Da	ta Interpretation: Learn to utilize La	abview software to de	sign and ana	lyze data. Apply				
knowledge of math, engi	ineering and science to interpret data.	Develop an understa	nding of and	develop the skills				
necessary to communica	te findings and interpretations in an er	ffective laboratory rep	oort.					
Background into use of	Analyze data collected in the	A,B,D,E,G,K,N	1, 2	Laboratory				
Labview is provided in	studio utilizing Labview and			reports and lab				
class discussion and	signal processing techniques.			teamwork.				
instructor and online-	Findings and interpretations are							
developed manuals.	reported in laboratory reports.							
Laboratory								
assignments will								
challenge students to								
process biomedical								
signais.			• •	1 : /				
Course Objective 3: Biomedical Signal Processing: Apply knowledge of math, engineering and science to								
techniques to solve prob	of biomedical signal processing. Und	erstand now to apply	specific mat	nematical				
Lectures discussions	Linderstand and apply signal			Testa				
laboratory and studio	processing and system analysis	A,D,D,E,O,K		Homework and				
evercises will cover	and how they apply to biomedical			laboratory				
theoretical models	signal processing			reports				
CoCourse Objective 4: Work in Multi disciplinary teams I cam to work and communicate official with								
CoCourse Objective 4: work in Multi-disciplinary teams: Learn to work and communicate effectively with								
Leberetere		ADDECKN		T also and a ma				
Laboratory	Each learn member is expected to	A,B,D,E,G,K,N		Laboratory				
assignments will be	problem solving strategies and to			for instructor and				
approximately 3	assume a specific role in			students on oral				
students	accomplishing the team's goals			presentations and				
studento.	accompnishing the team 5 goals.			lab teamwork.				

BME 310: Learning Outcome Summary

ABET Outcomes expected of graduates of BME BS program by the time that they graduate:

- (A) an ability to apply knowledge of mathematics, science, and engineering
- (B) an ability to design and conduct experiments, as well as to analyze and interpret data
- (C) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (D) an ability to function on multi-disciplinary teams
- (E) an ability to identify, formulate, and solve engineering problems
- (F) an understanding of professional and ethical responsibility

- (G) an ability to communicate effectively
- (H) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- $({\rm I})~$ a recognition of the need for, and an ability to engage in life-long learning
- (J) a knowledge of contemporary issues
- (K) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
- $\left(L\right) % \left(L\right) =\left(L\right) ^{2}\left(L\right) ^{2}\left($
- (M) the capability to apply advanced mathematics (including differential equations and statistics), science, and engineering to solve problems at the interface of engineering and biology
- $\left(N\right)$ an ability to make measurements on and interpret data from living systems
- (O) an ability to address problems associated with the interaction between living and non-living materials and systems